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Abstract— This paper proposes a new framework for the short-

term risk assessment of wind-integrated composite power systems 

via a combination of an analytical approach and a simulation 

technique. The proposed hybrid framework first employs the area 

risk method – an analytical approach, to include the detailed 

reliability models of different components of a power system. In 

this regard, a novel reliability modeling approach for wind 

generation for short-term risk assessment is also proposed. 

Thereafter, a non-sequential Monte-Carlo simulation (NSMCS) 

technique is adopted to calculate the partial risks of the area risk 

method. As a result, the proposed framework is also capable of 

including the contingencies and constraints of the transmission 

system that are customarily neglected in the area risk method. The 

computational performance of the proposed framework is greatly 

enhanced by adopting the importance sampling (IS) technique 

whose parameters are obtained using the cross entropy (CE) 

optimization. Case studies performed on a modified 24-bus IEEE 

Reliability Test System (RTS) validate that the detailed reliability 

modeling of wind generation and consideration of the transmission 

system are necessary to obtain more accurate short-term risk 

indices. Furthermore, the computational performance of the 

proposed framework is many orders higher than any other 

comparable methods.  

 
Index Terms— Cross entropy, Monte Carlo simulation, power 

system operation, reliability modeling, risk assessment.  

I. INTRODUCTION 

HE successful transition from the deterministic reliability 

criterion developed for traditional power systems to the 

probabilistic methods for modern, renewable-integrated smart 

grids necessitates the development of both long- and short-term 

risk assessment methods. Long-term risk assessment methods 

have been the subject of research for many decades and have 

been successfully developed and applied in the electric power 

industry for power systems planning problems [1]–[2]. 

However, these methods are not applicable to short-term risk 

assessment during power systems operation owing to two main 

reasons. First, the long-term risk assessment methods assume 

the failure probabilities of power systems’ components to be 

independent of time and operating conditions. Second, these 

techniques do not take into account the decisions taken during 

the power systems operation, e.g., in unit commitment (UC) and 

economic dispatch (ED), while evaluating the risk. Yet, the 

power systems operators require short-term risk indices to 

schedule sufficient operating or spinning reserve to account for 

unplanned contingencies and unexpected variability in 

generation and load in the coming hours [3].  

The PJM method, first proposed in the mid-1960s, is one of 

the earliest and simplest methods to assess short-term risk for a 

generating system [3]. The basic PJM method aims to evaluate 

the probability of a generating system to just meet or fail to meet 

the expected load during the time in which no additional 

generation is available. This time is also known as the lead time, 

and the probability is called the unit commitment risk. Several 

authors have extended the basic PJM method to consider rapid-

start generating units [1], load uncertainty [1]–[2], wind 

generation [4]–[6], energy storage [7]–[8], and electric vehicles 

[9] in the evaluation process. Nonetheless, as an essentially 

analytical approach, the basic PJM method and its variants 

suffer from two major drawbacks. First, these methods involve 

state-enumeration techniques whose complexity increases 

exponentially with the number of power system’s component 

that are included in the evaluation process [2]. Second, 

analytical methods often incorporate certain simplifications to 

make the evaluation process tractable. For instance, higher-

order contingencies [10] or lower probability events, such as 

failures of multiple transmission lines in a short time period, are 

neglected.  Because of these reasons, the transmission system’s 

contingencies and constraints might not be incorporated in a 

straightforward manner. Consequently, the effect of the 

transmission system on short-term risk might not be 

conveniently assessed. Ergo, the bus- or load-point short-term 

risk indices might not be evaluated. 

To address the abovementioned limitations, some authors 

recently proposed simulation-based approaches. In [11], the 

short-term risk of a composite power system is evaluated using 

a non-sequential Monte-Carlo simulation (NSMCS). The 

extremely poor computational performance of Monte-Carlo 

simulation (MCS) for very low failure probabilities is mitigated 

by employing an importance sampling (IS) technique. 

Reference [12] extends the work in [11] to consider renewable 

generation using quasi-sequential MCS. The variability in the 

output of renewable generation is modeled using some fixed 

scenarios, each having same occurrence probabilities. In [13], a 

state-transition sampling based MCS is employed to compute 

the short-term risk indices of a composite power system. IS is 

also utilized to improve the computational speed of the MCS. 
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In [14], IS is applied to sequential MCS to consider the 

chronology of failure events in the short-term risk assessment. 

A bi-level optimization model is proposed in [15] to assess the 

short-term risk of a transmission system, while neglecting the 

outages of the generators. In [16], the credibility theory is 

applied to model the failure probabilities of power systems’ 

components under different weather and operational conditions. 

Then, the short-term risk is evaluated considering the proposed 

fuzzy model of failure probabilities. In [17], the computational 

performance of NSMCS for risk assessment is improved using 

the subset simulation. Despite the worthy contributions of these 

works, renewable sources, particularly wind generation, are 

either not considered at all [11], [13]–[16] or insufficiently 

modeled [12], [17]. However, the uncertainty introduced by 

highly variable renewable sources coupled with the limitations 

of the transmission system can have a measurable impact on the 

short-term risk of composite power systems. 

Analytical approaches can allow for detailed reliability 

modeling of wind generation in short-term risk assessment [4], 

[5], whereas simulation techniques are robust and can consider 

the transmission system as well as different operational 

characteristics of a power system [11], [14]. The purpose of this 

paper is therefore to propose a hybrid framework that makes 

use of the aforesaid advantages of analytical and simulation 

techniques to duly evaluate the short-term risk of a wind-

integrated composite power system.  

To suitably assess the impact of wind generation on short-

term risk, a novel reliability modeling approach for wind 

generation is first proposed. The proposed modeling approach 

employs conditional probability distributions of wind speed, 

conditional probabilities, and the law of total probability to 

effectively model the probable variations in the output of wind 

generation during the lead time. The area risk method, which is 

an extension of the basic PJM method, is then modified and 

extended to include the proposed reliability modeling approach. 

 Thereafter, the modified area risk method is innovatively 

amalgamated with the NSMCS to calculate the partial risks of 

the area risk method. The requirements for computational 

memory and reliability data for the NSMCS are lower than 

other MCS techniques. To improve the computational 

performance of the proposed framework, the IS technique is 

applied to the NSMCS. In addition to the generators and 

transmission lines, the IS technique is directly applied to the 

wind speed distributions for wind generation. The parameters 

of the IS technique are obtained using iterative cross entropy 

(CE) optimization, which is one of the most widely adopted 

methods to obtain the near-optimal IS parameters [18], [19].  

The proposed framework is applied to a modified IEEE 

Reliability Test System (RTS) to indicate its effectiveness in 

efficiently computing the short-term risk indices of a wind-

integrated composite power system. The short-term risk indices 

are also evaluated for the commitment schedules obtained from 

the day-ahead UC (DAUC) program to show its application in 

power systems operation.  

The main contributions of this work are as follows:  

1. A novel hybrid framework for short-term risk 

assessment is proposed. The framework exploits the 

advantages of the area risk method and NSMCS to 

suitably assess the short-term risk of wind-integrated 

composite power systems. The proposed framework can 

also evaluate the bus- or load-point indices. 

2. To obtain accurate short-term risk indices, a new 

reliability modeling approach for wind generation is also 

proposed. This approach effectively models the 

uncertainty of wind generation in the operational domain 

through conditional distributions. Additionally, the area 

risk method is modified to include the proposed 

reliability modeling approach. 

3. The computational speed of the proposed hybrid 

framework is greatly enhanced by adopting the CE-

based IS technique for NSMCS. The IS technique is also 

applied to the conditional distributions of wind speed. 

The rest of the paper is organized as follows. Section II 

provides a preliminary description of the area risk method. 

Section III delineates the proposed reliability modeling 

approach for wind generation. The proposed hybrid framework 

is explained in Section IV. Case studies are performed in 

Section V. Finally, Section VI concludes the paper.  

II. PRELIMINARIES OF THE AREA RISK METHOD 

The area risk method, which is an extension of the basic PJM 

method, was first proposed to consider rapid start generating 

units in the evaluation of short-term risk [1]. The area risk 

method divides the given lead time into several sub-periods, 

and the partial risk in each sub-period is obtained using the 

basic PJM method. The summation of these partial risks gives 

the overall short-term risk for a given lead time. Consequently, 

the area risk method can consider the varying operational states 

of a power system within a lead time. As an example, Fig. 1 

pictorially depicts the area risk method for a given lead time 

that is divided into three sub-periods. Note that this 

representation only portrays the area risk method and does not 

necessarily represent the actual short-term risk indices.  

After dividing the lead time into appropriate sub-periods, the 

next step is to obtain suitable reliability models of different 

components of a power system for each sub-period of the area 

risk method.  

A. Conventional Generators Modeling 

Reliability modeling of conventional generators for short-

term risk assessment is based on the assumption that the lead 

time is sufficiently short to ignore any repair processes [1]. 

Therefore, the probability of a generating unit on outage, also 

known as the outage replacement rate (ORR), is given by the 

following exponential distribution: 

 𝑂𝑅𝑅𝑔 = 1 − 𝑒−𝜆𝑔𝑡 ≈ 𝜆𝑔𝑡,      ∀𝑔 ∈ {1, … , 𝑁G}, (1a) 

where each generating station 𝑔 consists of 𝑁g identical 

generating units with 𝑂𝑅𝑅𝑔, 𝜆𝑔 is the failure rate in failures per 

hour of a generating unit in generating station 𝑔, 𝑡 is the lead 

time, and 𝑁G is the total number of generating stations in the 

power system. Note that because of its memoryless property, 

the exponential distribution inherently models the dependence 

of a random variable (in this case, time to fail 𝑡) between the 
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sub-periods [20]. In other words, the failure time of a generating 

unit in a certain sub-period is dependent on the generating unit’s 

outage history in the previous sub-periods.  

 

B. Transmission Lines Modeling 

In the original area risk method and its variants [4]–[9], the 

transmission system is generally ignored. However, 

transmission line outages coupled with line flow limits might 

also result in load curtailment, which contributes to the short-

term risk. Therefore, in this work, the transmission system is 

taken into account for accurate short-term risk evaluation. The 

inclusion of transmission system also allows for the calculation 

of bus-point indices. Similar to the modeling of conventional 

generators, the repair process is ignored and the exponential 

distribution is assumed. Consequently, the transmission lines 

are also modeled using ORR. For a line 𝑙: 

 𝑂𝑅𝑅𝑙 = 1 − 𝑒−𝜆𝑙𝑡 ≈ 𝜆𝑙𝑡,      ∀𝑙 ∈ {1, … , 𝑁L}, (1b) 

where 𝜆𝑙 is the failure rate in failures per hour of transmission 

line 𝑙 and 𝑁L is the total number of transmission lines.  

III. PROPOSED RELIABILITY MODELING OF WIND 

GENERATION  

Aptly modeling the variability of wind generation during the 

lead time is vital to precisely assess the short-term risk of a 

wind-integrated power system. The wind generation fluctuates 

with the wind speed that is highly irregular and variable. Hence, 

a single ORR, as used for conventional generators, cannot 

represent the wind generation’s capacity outages in short-term 

risk assessment methods.  

One approach to modeling the wind generation is through the 

probabilistic modeling of wind speed during the lead time. The 

wind speed in a short future time period strongly depends on 

the initial wind speed at the start of that time period. This 

observation has been adopted in [4] and [5]. In particular, [4] 

obtains the conditional probability density functions (PDFs) of 

wind speed for different sub-periods in the lead time for a given 

initial wind speed at the start of the lead time (𝑇0 in Fig. 1). The 

initial wind speed at 𝑇0 is deterministically known, along with 

other operational statuses during power systems operation. The 

conditional PDFs are then converted to wind power PDFs using 

the wind turbine’s power curve. Fig. 2 represents these 

conditional PDFs of wind speed for a given initial wind speed 

at 𝑇0 in different sub-periods for an actual wind farm site. In 

this approach, the initial wind speeds at the start of subsequent 

sub-periods (i.e., at 𝑇ℎand 𝑇2ℎ) are ignored. 

 

 
Due to the highly volatile nature of wind speed, considering 

only a single wind speed PDF during each sub-period might not 

truly capture its spasmodic variations. Also, the wind speed 

PDFs during different sub-periods can be poles apart depending 

on the initial wind speeds at the start of the respective sub-

periods. In other words, the wind speed PDFs during different 

sub-periods should be conditional on the initial wind speed at 

the start of the respective sub-periods, and not at the start of the 

lead time. Fig. 3 illustrates the abovementioned statements. For 

the second sub-period B (𝑇ℎ- 𝑇2ℎ), the conditional PDFs of 

wind speed for three arbitrarily chosen initial wind speeds (low, 

10 km/h; medium, 20 km/h; high, 30 km/h) at the start of the 

second sub-period (𝑇ℎ) are shown. A comparison with Fig. 2 

shows that the conditional PDFs of wind speed in the second 

sub-period are markedly different from the one obtained by 

assuming a single initial wind speed at the start of the entire 

lead time. Similar conclusions can be drawn about the 

conditional PDFs of wind speed in the third sub-period C (𝑇2ℎ- 

𝑇3ℎ). Hence, the conditional PDFs of wind speed in a sub-

period must consider the probable initial wind speeds at the start 

of that sub-period. These probable initial wind speeds at the 

start of a sub-period, in turn, depend on the conditional PDF in 

the preceding sub-period.  

To understand the impact of different modeling approaches 

of PDFs on the risk assessment, first, the risk is generally 

defined as follows [18]: 

 𝑅𝑖𝑠𝑘 = ∫ 𝐻(𝒙)𝐹(𝒙)𝑑𝒙, (2a) 

where, 𝐻(∙) is a test function and will be explained later. 𝐹(∙) 

is the joint PDF of a random vector 𝑿. For composite power 

systems, 

 𝐹(𝑿) = 𝑓G(𝑿𝐆)𝑓L(𝑿𝑳)𝑓𝑃
𝑤𝑠(𝑿𝒘), (2b) 

where, 𝑓G(𝑿𝐆) is the PDF for random vector 𝑿𝐆, which 

represents the number of available generating units in each 

generating station, 𝑓L(𝑿𝑳) is the PDF for random vector 𝑿𝑳 

representing the availability of transmission lines, and 𝑓𝑃
𝑤𝑠(𝑿𝒘) 

is the PDF for random vector of wind speed 𝑿𝒘 in a period P. 

Note that 𝑿 = [𝑿𝐆, 𝑿𝑳, 𝑿𝒘]. 𝑓G(𝑿𝐆) and 𝑓L(𝑿𝑳)  can be 

 
Fig. 1. Pictorial representation of the area risk method. 𝑇0 represents the initial 

hour. 𝑇ℎ, 𝑇2ℎ, and 𝑇3ℎ represent one, two, and three hour(s), respectively, after 
the initial hour. 

 
Fig. 2. Conditional PDFs of wind speed in different sub-periods for a single 

initial wind speed at 𝑇0. 

 
Fig. 3. Conditional PDFs of wind speed in different sub-periods for different 

initial wind speeds at the start of those sub-periods. 
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calculated using (1a) and (1b), respectively. From (2a) and (2b), 

it is clear that the choice of PDFs directly affects the risk 

indices. Hence, a more precise determination of 𝑓𝑃
𝑤𝑠(𝑿𝒘) will 

expectedly result in more accurate risk indices. 

Now using the above notation, according to [4], 

 𝑓B
𝑤𝑠(𝑣B) = 𝑓B|A

𝑤𝑠 (𝑣B|𝑣A),  𝑓C
𝑤𝑠(𝑣B) = 𝑓C|B

𝑤𝑠(𝑣B|𝑣C), (2c) 

where,  𝑓B|A
𝑤𝑠 (𝑣B|𝑣A) is the conditional PDF for sub-period B 

given a PDF for sub-period A, and 𝑓C|B
𝑤𝑠(𝑣B|𝑣C) is the 

conditional PDF for sub-period C given a PDF for sub-period 

B. In other words, (2c) implies that the PDFs for sub-periods B 

and C are assumed to be independent of the PDFs for sub-

periods A and B, respectively. This independence assumption 

indicates the lack of information about the model. 

As shown in Fig. 3 and its corresponding discussion, a more 

reasonable approach is to model the PDFs for sub-periods B and 

C, considering their dependence on the PDFs for sub-periods A, 

and B, respectively. By the law of total probability, these PDFs 

can be obtained as 

 𝑓B
𝑤𝑠(𝑣B) = ∫ 𝑓B|A

𝑤𝑠 (𝑣B|𝑣A)𝑓𝐴
𝑤𝑠(𝑣A)𝑑𝑣A∞

−∞
, (2d) 

 𝑓C
𝑤𝑠(𝑣C) = ∫ 𝑓C|B

𝑤𝑠(𝑣C|𝑣B)𝑓𝐵
𝑤𝑠(𝑣B)𝑑𝑣B∞

−∞
. (2e) 

In this work, a systematic approach based on probabilistic 

techniques, is proposed to consider (2d) and (2e) for the short-

term risk assessment. In what ensues, the proposed approach is 

explained by considering a lead time of 3 hours as an example. 

For a specific power system, the actual determination of a 

suitable lead time depends on the start-up times of rapid-start 

generating units [3]. Also, as an example, the lead time is 

divided into three hourly sub-periods. Note that the choice of 

hourly sub-periods is motivated by the typical one-hour 

intervals considered in the UC programs. However, the 

systematic approach presented here is generally applicable to 

any length of lead time and for any number of sub-periods. 

Referring to Fig. 1, as a first step, using the known initial 

wind speed (𝑣ini,A) at the start of the lead time, i.e. at the start 

of sub-period A, the conditional PDF of wind speed for sub-

period A, 𝑓A
𝑤𝑠(𝑣A), is obtained using Algorithm 1. In Algorithm 

1, for 𝑓A
𝑤𝑠(𝑣A), the given hour is 𝑇0 and the ℎth hour is 𝑇ℎ. 

Algorithm 1 Algorithm for Wind Speed Conditional PDFs 

Input: Mean and standard deviation of historical hourly 

wind speeds, autoregressive moving average (ARMA) series 

of wind speed, and initial wind speed of a given hour  

Output:  Conditional Weibull PDF of wind speed for the 

next ℎth hour 

1: Simulate the ARMA series of wind speed using 

historical hourly wind speed data for a large number of 

simulation years Ν (~5000 – 10,000 years) [5], let Λ be 

the set of simulated wind speed values, then Λ =

{𝑣s
𝑡,𝜂

}, 𝑡 ∈ {1, … , 8760}, 𝜂 ∈ {1, … , Ν}, where 𝑣s
𝑡,𝜂

 is the 

simulated wind speed in hour 𝑡 and year 𝜂. 

2: Define an interval Δ𝑣 (e.g., 1 km/h) around the initial 

wind speed of the given hour 

3: Group all those simulated wind speed values of the next 

ℎth hour, provided that the simulated wind speed values 

of the given hour lie in the interval around the initial 

wind speed, i.e., Ψ = {𝑣s
𝑇0+ℎ,𝜂

: 𝑣0
𝑇0 −

Δ𝑣

2
≤ 𝑣s

𝑇0,𝜂
≤

𝑣0
𝑇0 +

Δ𝑣

2
} , 𝜂 ∈ {1, … , Ν}, where Ψ ⊂ Λ is the set of 

grouped simulated wind speed values 𝑣s
𝑇0+ℎ

 of ℎth hour, 

𝑣s
𝑇0 is the simulated wind speed values of given hour, 

𝑣0

𝑇0  is the initial wind speed at given hour 𝑇0 

4: Fit a Weibull PDF to the set Ψ, i.e., 𝑓ℎ
𝑤𝑠(∙ ) =

Weib(𝑎, 𝑏), where 𝑎 is the scale parameter and 𝑏 is the 

shape parameter. 

Next, the PDF for the first sub-period A is divided into 

𝑁p partitions. The midpoints of these partitions are assumed to 

be estimates of initial wind speeds for the start of sub-period B 

i.e., at 𝑇ℎ. These midpoints are obtained using (3a)–(3c): 

 𝑝𝑖
A = 𝑣A + 𝑖 (𝑣A − 𝑣A) /𝑁p,      ∀𝑖 ∈ {1, … , 𝑁p − 1}, (3a) 

 𝑣𝑗
ini,B = (𝑝𝑗−1

A + 𝑝𝑗
A)/2,      ∀𝑗 ∈ {2, … , 𝑁p − 1} , (3b) 

 𝑣1
ini,B = (𝑣A + 𝑝1

A)/2,     𝑣𝑁p
ini,B = (𝑝𝑁p−1

A + 𝑣A)/2, (3c) 

where 𝑝𝑖
A and 𝑣𝑗

ini,B
 are the partitioning points of 𝑓𝐴

𝑤𝑠(𝑣𝐴) and 

the estimated initial wind speeds, respectively. 𝑣A and  𝑣A are 

the maximum and minimum observed wind speed values of 𝑣A 

in sub-period A, respectively. 

Each of these estimated initial wind speeds have associated 

occurrence probabilities that can be calculated using (3d)–(3f): 

 Ρ(𝑣𝑗
ini,B) = ∫ 𝑓A

𝑤𝑠(𝑣A)𝑑𝑣A𝑝𝑗
A

𝑝𝑗−1
A  , ∀𝑗 ∈ {2, … , 𝑁p − 1} (3d) 

 Ρ(𝑣1
ini,B) = ∫ 𝑓𝐴

𝑤𝑠(𝑣A)𝑑𝑣A𝑝1
A

0
 , (3e) 

 Ρ(𝑣𝑁p
ini,B) = ∫ 𝑓A

𝑤𝑠(𝑣A)𝑑𝑣A∞

𝑝
𝑁p−1
A  , (3f) 

where Ρ(𝑣𝑗
ini,B) is the probability of initial wind speed 𝑣𝑗

ini,𝐵
. 

Note that ∑ Ρ(𝑣𝑗
ini,B)𝑁p

𝑗=1 = 1. 

Fig. 4 depicts these estimated initial wind speeds using the 

conditional PDF of wind speed for sub-period A with 𝑁p = 3. 

For this case, these three initial wind speeds might correspond 

to low, medium and high initial wind speed scenarios, having 

corresponding occurrence probabilities as illustrated by the 

shaded region in the figure.  

Now, for each of these estimated initial wind speeds, 

conditional PDFs of wind speed for sub-period B are obtained 

using Algorithm 1. In this case, the initial hour is set to the start 

of sub-period B (𝑇ℎ) and the ℎth hour is set to the end of sub-

period B (𝑇2ℎ). As a result, a total of 𝑁p conditional PDFs 

({𝑓B,1
𝑤𝑠 , … , 𝑓B,𝑁p

𝑤𝑠 }) are obtained that represent the variability of 

wind speed for this sub-period. This statement can be 

interpreted as follows. As the uncertainty of wind speed 

increases with future time, multiple PDFs are employed to 

represent this increased uncertainty. Moreover, each of these 

conditional PDFs also have occurrence probabilities given by 

(3d)–(3f). 

By following a similar approach, the estimates of initial wind 

speed at the start of sub-period C (𝑣𝑗
ini,C

) can be obtained by 

further dividing each of the  𝑁p conditional PDFs of sub-period 

B into 𝑁p partitions. However, this division would result in 

 𝑁p ×  𝑁p estimates of initial wind speed and conditional PDFs 

for sub-period C, thereby requiring  𝑁p ×  𝑁p computations of 

partial risks. To circumvent the problem of high computational 

burden and intractability, first a surrogate conditional PDF of 
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wind speed for sub-period B is estimated using the initial wind 

speed at the start of sub-period A via Algorithm 1. Afterward, 

this surrogate conditional PDF is divided into 𝑁p partitions 

resulting in 𝑁p estimated initial wind speeds for the start of sub-

period C. Then, the conditional PDFs of wind speed for sub-

period C ({𝑓C,1
𝑤𝑠 , … , 𝑓C,𝑁p

𝑤𝑠 }) are obtained using these estimated 

initial wind speed values via Algorithm 1. As a result, the 

conditional PDFs for sub-period C are still dependent on the 

initial wind speeds at the start of sub-period C, while the 

number of conditional PDFs remains  𝑁p. The whole process 

can be repeated for any number of sub-periods of the area risk 

method and for any 𝑁p > 1. 

 

IV. PROPOSED RISK ASSESSMENT FRAMEWORK 

In this section, the proposed framework for the short-term 

risk assessment of wind-integrated composite power systems is 

explained. The key ingredients of the proposed framework are 

the modified area risk method considering the proposed 

reliability modeling of wind generation and the IS-based 

NSMCS. The short-term risk index considered in this paper is 

the probability index, i.e., the probability of load curtailment. 

Nonetheless, the framework can be easily extended to evaluate 

other risk indices, such as expected power not supplied and 

expected number of load curtailments.  

A. Modified Area Risk Method 

The area risk method needs to be adapted to consider the 

proposed reliability modeling of wind generation. Note that, for 

each sub-period B and C, 𝑁p partial risks, corresponding to 𝑁p 

conditional PDFs of wind speeds, must be evaluated. Also, 

because each of these 𝑁p partial risks represent disjoint events, 

the law of total probability can be applied to obtain the net 

partial risks. For sub-periods B and C, the net partial risks are 

given by (4a)–(4b), and the total risk is then evaluated by (4c): 

 𝑅B = ∑ Ρ(𝑣𝑗
ini,B)𝑁p

𝑗=1 ∙ 𝑃𝑅𝑗
B − 𝑅A, (4a) 

 𝑅C = ∑ Ρ(𝑣𝑗
ini,C)𝑁p

𝑗=1 ∙ 𝑃𝑅𝑗
C − 𝑅B, (4b) 

 𝑅 = 𝑅A + 𝑅B + 𝑅C, (4c) 

where 𝑃𝑅𝑗
B is the partial risk in sub-period B considering the 

𝑗th conditional PDF of wind speed 𝑣B. Similarly, 𝑃𝑅𝑗
C 

represents the partial risk in sub-period C considering the 𝑗th 

conditional PDF of wind speed 𝑣C. 𝑅A, 𝑅B, and 𝑅C are the net 

partial risks for sub-periods A, B, and C, respectively. 𝑅 is the 

total risk for the entire lead time. Equations (4a) and (4b) can 

be viewed as discrete approximations to (2d) and (2e), 

respectively. Fig. 5 pictorially represents the modification to the 

area risk method for 𝑁p = 3.  

 

B. Evaluation of Partial Risks via CE-MCS 

The routinely employed approach to evaluate the partial risks 

in the area risk method is to use a capacity outage probability 

table (COPT), which is, in essence, an analytical method. As 

mentioned in the Introduction, analytical methods are not 

appropriate for composite power system risk assessment. 

Therefore, a more prudent approach is to employ a simulation 

technique such as NSMCS. Simulation techniques are robust to 

system size and can also consider a wide range of operational 

characteristics. Therefore, this work proposes a fusion of the 

area risk method with NSMCS to adequately assess the short-

term risk of a composite power system. 

Using crude NSMCS, the 𝑗th partial risk for any sub-period 

P can be evaluated as 

 𝑃𝑅𝑗
P =

1

𝑁sim
∑ 𝐻(𝑿𝑘; 𝐿)𝑁sim

𝑘=1 , (5a) 

where 𝑿𝑘 = [𝑿𝑘
G, 𝑿𝑘

L , 𝑿𝑘
W], 𝑿𝑘

G = [𝑛𝑘
1 , … , 𝑛𝑘

𝑔
 , … , 𝑛𝑘

𝑁G
], 𝑿𝑘

L =

[𝜁𝑘
1, … , 𝜁𝑘

𝑙 , … , 𝜁𝑘
𝑁L

], and 𝑿𝑘
W = [𝑣𝑘

1 , … , 𝑣𝑘
𝑤 , … , 𝑣𝑘

𝑁W
]. 𝑿𝑘

G and 

𝑿𝑘
L , are the 𝑘th samples following B(𝑿; 𝑵𝒈, 𝑶𝑹𝑹𝐆) and 

B(𝑿; 𝟏, 𝑶𝑹𝑹𝐋), respectively, where B(∙ ; ∙ ,∙) stands for the 

binomial distribution [18]. 𝑶𝑹𝑹𝐆 and 𝑶𝑹𝑹𝐋 are vectors of 

ORRs for the generating stations and transmission lines, 

respectively. 𝑛𝑘
𝑔

 represents the number of available generating 

units in generating station 𝑔 having a total of 𝑁𝑔 generating 

units. 𝑵𝒈 is a vector of the number of generating units 𝑁𝑔. 𝜁𝑘
𝑙  is 

1 if line 𝑙 is available and 0 if it is on outage. 𝑣𝑘
𝑤  is the 𝑘th wind 

speed sample following the 𝑗th conditional PDF of the wind 

speed of wind farm 𝑤, 𝑓P,𝑗
𝑤𝑠,𝑤(𝑿𝑘

W). 𝑁W is the number of wind 

farms. 𝑁sim is the number of samples. Note that 𝑅A in (4c) can 

also be calculated using (5a). 

In (5a), 𝐻(𝑿𝑘; 𝐿) is a test function that evaluates whether or 

not the sample 𝑿𝑘 leads to load curtailment. For the short-term 

risk assessment of a generating system, 

 𝐻(𝑿𝑘; 𝐿) = {
0 𝑆(𝑿𝑘) ≥ 𝐿

1 𝑆(𝑿𝑘) < 𝐿
, (5b) 

where 𝑆(𝑿𝑘) represents the summation of available generation 

capacity associated with state 𝑿𝑘, and 𝐿 is the load. For 

composite power systems, the definition of 𝑆(𝑿𝑘) is modified, 

as the transmission system should also be considered to 

determine the load curtailment. In this regard, the DC 

representation of transmission system is adopted in this work. 

 
Fig. 4. Partitioning of the conditional PDF of wind speed.  

 
Fig. 5. Integrating the proposed reliability modeling of wind generation in the 

area risk method.  
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The DC optimal power flow (DC-OPF) is employed to evaluate 

the load curtailment at each bus for each state 𝑿𝑘. If no load 

curtailment occurs at any bus, 𝑆(𝑿𝑘) is the same as that 

obtained for the generating system. However, if the load 

curtailment is non-zero, 𝑆(𝑿𝑘) is given by: 

 𝑆(𝑿𝑘)  = ∑ 𝑙𝑏
𝑁B

𝑏=1 , (5c) 

where 𝑙𝑏 is the load served at bus 𝑏 and 𝑁B is the total number 

of buses in the system. 𝑙𝑏 is obtained using the DC-OPF.  

A fundamental downside of the crude NSMCS is the large 

computational burden when the events to be assessed are rare 

i.e. for rare event simulation [18]. This is the case in the short-

term risk assessment as the probability of load curtailment in a 

short lead time is often very small (around ~10-4). Also, because 

𝑁p partial risks are required to be evaluated for each of sub-

periods B and C, the direct application of the crude NSMCS is 

computationally prohibitive. Hence, in this work, the IS 

technique is applied to improve the computational performance 

of the crude NSMCS. The IS is a variance reduction technique 

in which the original probability distributions are distorted to 

increase the occurrences of failure events, thereby accelerating 

the convergence rate of simulation. In this case, IS modifies B(∙

 ; 𝑵𝒈, 𝑶𝑹𝑹𝐆) and B(∙ ; 𝟏, 𝑶𝑹𝑹𝐋) to B(∙ ; 𝑵𝒈, 𝑶𝑹𝑹𝐆
∗ ) and B(∙

 ; 𝟏, 𝑶𝑹𝑹𝐋
∗ ), respectively. In addition, in this work, the original 

conditional PDF of the wind speed is distorted from 𝑓P,𝑗
𝑤𝑠,𝑤(∙

) to 𝑓P,𝑗
𝑤𝑠,𝑤,∗(∙). 𝑓P,𝑗

𝑤𝑠,𝑤(∙) is a Weibull distribution with two 

parameters (𝑎𝑤 , 𝑏𝑤); however, only the scale parameter (𝑎𝑤) is 

modified. These distorted PDFs, also known as the IS densities, 

are then used to obtain the new samples 𝑿𝑘. The partial risk is 

then evaluated by the following unbiased estimator: 

 𝑃𝑅𝑗
P =

1

𝑁sim
∑ 𝐻(𝑿𝑘; 𝐿)𝑁sim

𝑘=1 𝑊(𝑿𝑘), (5d) 

where 𝑊(𝑿𝑘) is the likelihood ratio and given by: 

 𝑊(𝑿𝑘) = 𝑊G(𝑿𝑘)𝑊L(𝑿𝑘)𝑊W(𝑿𝑘), (5e) 

 𝑊G(𝑿𝑘) = B(𝑿𝑘
G; 𝑵𝒈, 𝑶𝑹𝑹𝐆) B(𝑿𝑘

G; 𝑵𝒈, 𝑶𝑹𝑹𝐆
∗ )⁄ , (5f) 

 𝑊L(𝑿𝑘) = B(𝑿𝑘
L; 𝟏, 𝑶𝑹𝑹𝐋) B(𝑿𝑘

L; 𝟏, 𝑶𝑹𝑹𝐋
∗ )⁄ , (5g) 

 𝑊W(𝑿𝑘) = ∏ (𝑓P,𝑗
𝑤𝑠,𝑤(𝑿𝑘

W)  𝑓P,𝑗
𝑤𝑠,𝑤,∗(𝑿𝑘

W)⁄ )𝑁W

𝑤=1 . (5h) 

Different methods can be employed to obtain the IS densities 

[18], [19]. The most widely used approach is the CE 

optimization, which minimizes the Kullback-Leibler 

divergence between the optimal IS densities and the 

approximated IS densities. In this work, the CE optimization is 

adopted to find the IS densities for generators, transmission 

lines, and wind speed. Interested readers are referred to [19] for 

a detailed discussion on the CE optimization and to [21]–[23] 

for its initial application to the long-term risk assessment of 

power systems. For the sake of simplicity, the CE optimization 

is presented here as Algorithm 2, without detailing each step.  

The combination of the CE optimization with NSMCS will 

be referred to, henceforward, as the CE-MCS. 

Algorithm 2 CE Optimization 

Input:  Original ORRs of generating units and transmission 

lines, Weibull PDF of wind speed and load 𝐿 

Output: Distorted ORR of generating units and transmission 

lines, and distorted Weibull PDF of wind speed 

1: Set the number of samples for CE optimization (𝑁CE), 

and other CE parameters (𝜌, 𝛼, 𝑚max) 

2: Obtain the original vectors of ORRs and 𝑓P,𝑗
𝑤𝑠,𝑤(∙) 

3: Set iteration counter 𝑚 = 1, 𝑶𝑹𝑹𝐆
𝒎 =

𝑶𝑹𝑹𝐆, 𝑶𝑹𝑹𝐋
𝒎 = 𝑶𝑹𝑹𝐋, and 𝑓P,𝑗

𝑤𝑠,𝑤,𝑚(∙) = 𝑓P,𝑗
𝑤𝑠,𝑤(∙)  

4: for 𝑚 = 1 to 𝑚 = 𝑚max do 

5: Obtain samples 𝑿𝑝 = [𝑿𝑝
G, 𝑿𝑝

L , 𝑿𝑝
W], where 𝑝 =

{1, … , 𝑁CE}, following B(∙ ; 𝑵𝒈, 𝑶𝑹𝑹𝐆
𝒎), B(∙

 ; 𝑵𝒈, 𝑶𝑹𝑹𝐋
𝒎), and 𝑓P,𝑗

𝑤𝑠,𝑤,𝑚(∙) 

6: Evaluate the performance function 𝑆(𝑿𝑝) and 

arrange 𝑆(𝑿𝑝) in ascending order, i.e., 𝑆[1] ≤

 𝑆[2] ≤ ⋯ ≤ 𝑆[𝑁CE] 
7: if (𝑆[⌊𝜌𝑁CE⌋] ≥ 𝐿), set  𝐿𝑚̂ = 𝑆[⌊𝜌𝑁CE⌋] else set 

𝐿𝑚̂ = 𝐿 
8: Evaluate the test function 𝐻(𝑿𝑝; 𝐿𝑚̂) for all 𝑝 

9: Calculate 𝑊G(𝑿𝑝), 𝑊L(𝑿𝑝), and 𝑊𝑊(𝑿𝑝) using 

(5f)–(5h), also calculate 𝑊(𝑿𝑝) using (5e), for all 𝑝 

10: Calculate the distorted ORRs and scale parameter: 

𝑂𝑅𝑅𝑔
𝑚+1

= 𝛼 (1 −
1

𝑁𝑔

∑ 𝐻(𝑿𝑝; 𝐿𝑚̂)𝑁CE

𝑝=1 𝑊(𝑿𝑝)𝑛𝑝
𝑔

∑ 𝐻(𝑿𝑝; 𝐿𝑚̂)𝑁CE

𝑝=1 𝑊(𝑿𝑝)
) + (1

− 𝛼)𝑂𝑅𝑅g
𝑚 

𝑂𝑅𝑅𝑙
𝑚+1 = 𝛼 (1 −

∑ 𝐻(𝑿𝑝; 𝐿𝑚̂)𝑁CE

𝑝=1 𝑊(𝑿𝑝)𝜁𝑝
𝑙

∑ 𝐻(𝑿𝑝; 𝐿𝑚̂)𝑁CE

𝑝=1 𝑊(𝑿𝑝)
)

+ (1 − 𝛼)𝑂𝑅𝑅𝑙
𝑚 

𝑎𝑤
𝑚+1 = (

∑ 𝐻(𝑿𝑝; 𝐿𝑚̂)𝑁CE

𝑝=1 𝑊(𝑿𝑝)(𝑣𝑝
𝑤)

𝑏𝑤

∑ 𝐻(𝑿𝑝; 𝐿𝑚̂)𝑁CE

𝑝=1 𝑊(𝑿𝑝)
)

1/𝑏𝑤

 

 

11: if 𝐿𝑚̂ = 𝐿, break the for loop 

12: Set 𝑶𝑹𝑹𝐆
∗ = 𝑶𝑹𝑹𝐆

𝒎, 𝑶𝑹𝑹𝐋
∗ = 𝑶𝑹𝑹𝐋

𝒎, and 

𝑓P,𝑗
𝑤𝑠,𝑤,∗(∙) = 𝑓P,𝑗

𝑤𝑠,𝑤,𝑚(∙) 

C. Overall Framework 

The complete hybrid framework for the short-term risk 

assessment of wind-integrated composite power systems is 

given in Fig. 6. The first step of the framework involves 

determining the committed generating units through a UC 

program. Then, the modified area risk method is utilized and 

the partial risk for the first sub-period is obtained using the CE-

MCS presented in Section IV-B. Thereafter, 𝑁p partial risks are 

evaluated using (5d) for each subsequent sub-period. Finally, 

the total risk is evaluated using (4c). Note that the parallel 

computational techniques can be applied to calculate the partial 

risks for all sub-periods at the same time. To this end, the 

framework in Fig. 6 can be slightly modified. The step for 

calculating the net partial risks ((4a) and (4b)) after evaluating 

partial risks for all conditional PDFs for a sub-period can be 

deferred, and the partial risks for all sub-periods can be 

calculated first. This allows steps in the larger grey rectangles 

in Fig. 6 to be run on separate cores of a PC at the same time.   

With regard to the evaluation of bus-point indices, the only 

modification required to the proposed framework is a change in 

the definition of test function 𝐻(𝑿𝑘; 𝐿). In this case, 𝐻(𝑿𝑘; 𝐿) 

must be defined for each bus in the power system as follows: 

 𝐻𝑏(𝑿𝑘; 𝐿𝑏) = {
0 𝑙𝑏 ≥ 𝐿𝑏

1 𝑙𝑏 < 𝐿𝑏
, (6a) 
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where 𝐻𝑏(𝑿𝑘; 𝐿𝑏) is the test function for bus 𝑏, 𝐿𝑏 is the load 

demand at bus 𝑏. After defining the test function, the rest of 

procedure is similar, and the partial risk is calculated using: 

 𝑃𝑅𝑗,𝑏
P =

1

𝑁sim
∑ 𝐻𝑏(𝑿𝑘; 𝐿𝑏)𝑁sim

𝑘=1 𝑊(𝑿𝑘), (6b) 

where  𝑃𝑅𝑗,𝑏
P  is the partial risk for bus 𝑏 in sub-period P 

considering the 𝑗th conditional PDF of wind speed.  

 

V. CASE STUDIES 

In this section, the effectiveness of the proposed framework 

is demonstrated through some key simulations performed on 

the modified 24-bus IEEE RTS [24]. The original RTS 

comprises 14 generating stations with 32 generating units in 

total, 24 buses, 17 load points, and 33 transmission lines. The 

original RTS is modified by including a 1,000 MW wind farm 

at bus 14. Also, a 155 MW conventional generator at bus 16 is 

removed. For CE optimization, 𝑁CE is set between 20,000 and 

50,000, 𝜌 is set between 0.01 and 0.05, 𝛼 is set to 0.95, and 

𝑚max is set to 10. These parameters are obtained from [19] and 

[21]. For the convergence of MCS, the minimum coefficient of 

variation (COV) is set to 2% for the generating system and 5% 

for the composite power system. In all simulations, the lead 

time is equal to 3 hours and 𝑁P is set to 3. The ARMA series 

for Algorithm 1, along with the wind turbine curve, is obtained 

from [25]. All studies are performed for January 31 from hours 

00:00 to 04:00, unless otherwise stated. Note that these specific 

hours are only selected for case studies. As it will be shown 

later, the proposed framework is generally applicable for any 

time of the day. All simulations are performed on a PC with a 

3.40 GHz Intel® Core i7-4770 CPU and 16 GB RAM. The 

proposed framework is implemented in MATLAB R2015a, 

with GUROBI 7.0.2 used as a solver for DC-OPF. 

A. Demonstrative Case 

To confirm the efficacy of the proposed reliability modeling 

approach of wind generation, the proposed framework is 

compared with the approaches presented in [4] and [5]. Because 

[4] and [5] do not consider the transmission system, it is ignored 

in this subsection for the sake of comparison. The load is set to 

the peak value of 2,850 MW, and all 31 generating units are 

committed to supply the load.  

Table I presents the short-term risk indices for different initial 

wind speeds at the start of the lead time. The short-term risk 

indices obtained from the proposed framework lie between the 

ones estimated by [4] and [5]. In other words, [4] ([5]) may 

overestimate (underestimate) the short-term risk indices. The 

aforementioned observation holds for all initial wind speed 

values. One reason for this behavior can be elucidated with the 

help of Table II, which depicts the mean wind speeds and 

corresponding occurrence probabilities for each sub-period in 

all three approaches when the initial wind speed is 20 km/h. For 

example, for sub-period B, [4] assumes a mean wind speed of 

19.94 km/h with a probability of 100%. However, there is 

actually a 26.39% chance that the mean wind speed during sub-

period B is 25.63 km/h. Higher mean wind speeds correspond 

to higher wind generation and, therefore, lower risk indices. On 

the other hand, [5] assumes a mean wind speed of 19.71 km/h 

for the entire lead time and thus neglects any possible low wind 

speed values that might occur within different sub-periods of 

the lead time. Hence, the risk obtained by [5] is lower. By 

considering the multiple conditional PDFs during sub-periods 

B and C, the proposed approach accounts for the probable 

variations in the wind speed and, consequently, in wind 

generation during these sub-periods, thereby resulting in more 

realistic risk evaluation.  

 To further investigate the accuracy of the proposed reliability 

modeling approach, the regression analyses between wind 

generation values of different sub-periods are exhibited in Fig. 

7. A close scrutiny of Fig. 7 reveals two important insights. 

Firstly, the linear regression models in sub-periods B and C are 

evidently different when the initial wind power (or initial wind 

speed) at the start of the respective sub-periods (i.e., at 𝑇ℎ, 

and 𝑇2ℎ, respectively) are considered. This observation 

reinforces the point made in Section II that the wind speed PDFs 

of sub-periods should be conditional on the initial wind speeds 

at the start of respective sub-periods. Secondly, compared to 

Fig. 7(a) and Fig. 7(b), the linear regression models in Fig. 7(c) 

 
Fig. 6. Proposed hybrid framework for the short-term risk assessment.  
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and Fig. 7(d), respectively, indicate higher wind generation in 

those sub-periods. The higher wind generation will expectedly 

result in lower probabilities of load curtailment. As a result, the 

short-term risk indices obtained using the proposed approach 

are lower than those calculated from [4] in Table I.  

 

 

 

B. Computational Performance 

From the power system operators’ perspective, the 

computational speed of short-term risk assessment framework 

is of great importance in order to make timely risk-informed 

decisions. Ergo, in this subsection, the computational speed of 

the proposed framework is examined. For a COV of 2%, crude 

NSMCS would require nearly ~108 samples to evaluate the risk 

which is on the order of ~10-4 [18]. This means one complete 

risk evaluation for the entire lead time would require 

approximately ~7×108 samples. This, in turn, would result in 

extremely large computational times. Therefore, to compare the 

computational performances of the CE-MCS with the crude 

NSMCS within a suitable simulation time, the system is made 

less reliable by removing a 155 MW conventional generator at 

bus 15 and assessing the short-term risk indices of the resulting 

generating system. For this modified system, Table III 

compares the computational performances of the crude NSMCS 

against the CE-MCS, while considering the initial wind speed 

of 20 km/h. The computational performance of the CE-MCS is 

several orders higher than that of the crude NSMCS. The poor 

performance of the crude NSMCS is due to very low failure 

probabilities of the power system components during a short 

lead time.  

 
C. Composite Power System Risk Indices 

The results presented in Sections V-A and V-B clearly 

establish the superiority of the proposed framework, both, in 

terms of the proper modeling of wind generation and very high 

computational performance, over existing methods. In this 

subsection, we turn our attention to the short-term risk 

assessment of a wind-integrated composite power system. The 

contingencies in the transmission system and the line flow 

limits are now considered. The conditions of RTS are the same 

as for Table I. The initial wind speed is set to 20 km/h. Table 

IV summarizes the short-term risk indices for different 

capacities of the transmission system. A comparison of Table I 

with Table IV indicates that the short-term risk indices are 

expectedly higher when the transmission system is included in 

the assessment. Interestingly, the transmission system’s 

capacities significantly affect the short-term risk indices. With 

lower transmission capacities, the short-term risk indices are 

measurably higher. The varying capacities of the transmission 

system may correspond to the situation of weather-dependent 

transmission line ratings. Hence, through the proposed 

framework, power system operators can also recognize the 

indirect impacts of weather on short-term risk indices. On 

comparing Table III with Table IV, it can be observed that the 

computational time increases when the transmission system is 

considered. This is due to the DC-OPF analysis which is 

performed for each contingency state for composite systems.  

 
 Fig. 8 is a heat map for the short-term risk at different bus-

points when the transmission capacity is 100%. Some buses do 

not experience any load curtailment and the short-term risk 

indices at those buses are zero. Also, one can conclude that, 

from the point of view of short-term risk, bus 18 has the highest 

risk of load curtailment for these particular hours. Power system 

operators can utilize such information to provision bus-specific 

preventive actions. One such action involves re-dispatching the 

nearby generating units or committing additional units to 

minimize the risk. Note that these bus-point short-term risk 

TABLE I 

SHORT-TERM RISK FOR DIFFERENT WIND GENERATION MODELING METHODS 

Initial 

Wind 

Speed 

Case 
𝑅A (×
10−4) 

𝑅B (×

10−4) 

𝑅C (×

10−4) 

𝑅 (×

10−4) 

10 km/h 

Proposed 0.5011 1.3768 2.7686 4.6465 

[4] 0.5011 1.9990 4.2676 6.7677 

[5] - 4.2690 

20 km/h 
Proposed 0.2630 0.9939 1.7637 3.0206 

[4] 0.2630 1.2337 2.8485 4.3452 

[5] - 2.7855 

30 km/h 
Proposed 0.0384 0.2735 1.1404 1.4523 

[4] 0.0384 0.2782 1.2073 1.5239 

[5] - 1.2634 

 

 
TABLE II 

MEAN WIND SPEED DURING DIFFERENT SUB-PERIODS 

Case Period A (km/h) Period B (km/h) Period C (km/h) 

Proposed 21.15 (1) † 
12.05 (0.1290) 12.43 (0.2434) 
18.72 (0.6071) 20.55 (0.6058) 

25.63 (0.2639) 27.93 (0.1508) 

[4] 21.15 (1) 19.94 (1) 19.71 (1) 

[5]                                        19.71 (1) 

†The numbers in brackets indicate the corresponding occurrence probabilities. 

 

 

 
Fig. 7. Regression analyses, (a), (b): using the approach of [4], and (c), (d): 

using the proposed approach. 

TABLE III 

COMPUTATIONAL PERFORMANCE OF CE-MCS VS. CRUDE NSMCS 

Case Metric Period A Period B Period C Total 

CE-

MCS 
Risk (× 10−3) 2.0373 2.2227 3.8679 8.1279 

Time (s) 0.52 3.28 48.03 51.83 

Crude 

NSMC 
Risk (× 10−3) 2.0467 2.1426 4.1050 8.2943 

Time (s) 5804.26 7872.21 7040.96 20717 

 

 

TABLE IV 

SHORT-TERM RISK OF COMPOSITE POWER SYSTEM 

Capacity  Metric Period A Period B Period C Total 

100 % 
Risk (10−4) 0.2536 0.9387 2.0397 3.2320 

Time (s) 91.56 378.49 324.75 794.80 

90 % 
Risk (10−3) 0.2832 0.9798 1.1557 2.4187 

Time (s) 70.60 354.36 450.81 875.77 

80 % 
Risk (10−3) 0.4510 1.1156 1.3384 2.9050 

Time (s) 72.66 314.00 246.90 633.56 
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indices can only be obtained by including the transmission 

system in the assessment framework. 

 
D. Daily Short-Term Risk Indices  

This subsection evaluates short-term risk indices for an entire 

day. The studies are performed for April 2 and the historical 

mean hourly wind speeds of that day are assumed to be the 

initial wind speeds. Fig. 8 depicts the total risk for each hour of 

the day. Interestingly, the total risk is higher during off-peak 

hours as compared to on-peak hours; this is because few 

generating stations are committed to supply the load during off-

peak hours. Furthermore, most of these committed generating 

stations comprise only a single unit. Hence, a single generating 

unit outage might result in load curtailment. On the other hand, 

many generating stations comprising several generating units 

are committed during on-peak hours. Wind generation also 

peaks during these hours. This observation is in stark contrast 

to the long-term risk assessment, in which the on-peak hours 

(i.e., the peak load) contribute the most to the long-term risk 

indices. This highlights the importance of considering the 

commitment decisions as well as daily variation in load and 

generation for short-term risk assessment.  

 

E. Spinning Reserve Assessment 

In this subsection, the proposed framework is applied to 

compare and contrast two deterministic criteria for setting the 

spinning reserve in power system operation. In criterion 1, the 

spinning reserve is equal to the capacity of the largest online 

generating unit, i.e. the N-1 criterion, and in criterion 2, the 

spinning reserve is set to a certain percentage of load (in this 

study, 10%)  [27]. Fig. 10 illustrates the short-term risk indices 

and the spinning reserve for the two criteria. As can be seen, for 

criterion 1, i.e. the N-1, the short-term risk indices are lower 

compared to criterion 2. However, the total operational costs 

are the opposite. For criterion 1, the DAUC costs are $ 2.4864 

M, whereas for criterion 2, the costs are $ 2.0595 M. This shows 

that the reliability and costs compete with each other and that 

higher reliability comes at increased costs. An interesting 

observation is that, for criterion 1, the spinning reserve remains 

the same for all hours, however, the short-term risk varies 

noticeably. This observation demonstrates the shortfall of using 

inconsistent deterministic criteria for ensuring the reliability 

during power system operation. On contrary, the power system 

operators can utilize short-term risk indices to adjust the 

spinning reserve requirements while ensuring the reliability. 

 

F. Sensitivity to the Wind Generation Penetration 

This subsection examines the effects of the penetration of 

wind generation on the short-term risk indices. Fig. 11 shows 

that the total risk monotonically decreases with increasing 

capacity of the wind farm. For the first and second sub-periods, 

which are Period A and Period B, the decrease in risk is only 

marginal. A very slight increase in risk for Period B is observed 

when the wind farm capacity is 1,250 MW. This is due to the 

fact that the simulated risk indices are obtained within a certain 

range of true, actual values (in this case 5%). For the last sub-

period, i.e., Period C, a sharp reduction in risk is observed. This 

observation supports the rationale of utilizing the area risk 

method to evaluate the partial risks and identify the sub-

period(s) that contributes to the short-term risk. 

 

G. Sensitivity to the CE Parameters 

This subsection examines the effect of parameters of CE 

optimization on the performance of the proposed framework. 

The two most important CE parameters are the number of 

samples for CE optimization 𝑁CE , and the multi-level or rarity 

 
Fig. 8. Heat map for the bus-point short-term risk indices.  This figure is 
generated using [26]. 

 
Fig. 9. Daily short-term risk. Load, wind generation and total committed 
capacity is scaled down by 2000 and shown in MW. Short-term risk is scaled 

up by 100. Grey dots indicate the committed generating units.  

 
Fig. 10. Short-term risk indices for different spinning reserve criteria. 

 
Fig. 11. Short-term risk indices for varying capacities of wind generation. The 

conditions of RTS are same as that for Table IV (capacity 100%).  
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parameter 𝜌 [19]. Table V shows the short-term risk indices and 

corresponding computational times for different values of 𝑁CE 

and 𝜌, for the case study of Section V.A. As can be observed, 

the choice of 𝜌 can impact the computational time to a certain 

degree, however, the short-term risk indices remain the same.  

 

H. Practical Considerations 

As mentioned in the Introduction and shown in Section V.D–

V.E, power system operators can utilize the short-term risk 

indices to evaluate the reliability of the power system in the 

operational domain. The short-term risk indices calculated 

using the proposed framework can then be used as input to the 

conventional power system operation methods. One such 

scheme for using the short-term risk indices in power system 

operation has been discussed in [28]. This scheme involves 

calculating the short-term risk indices after performing the 

DAUC. Then, the spinning reserve constraints are adjusted for 

those hours which have higher risk indices and the DAUC is 

performed again. This ensures that the short-term risk indices 

remain below a certain pre-defined level for all hours. The 

proposed framework developed in this framework can easily be 

appended to such schemes.  

VI. CONCLUSION 

In this paper, a hybrid framework for the assessment of short-

term risk indices of a wind-integrated composite power system 

is proposed. An analytical technique, i.e., the area risk method, 

is extended to appropriately consider the impact of wind 

generation on short-term risk indices through a new reliability 

modeling approach of wind generation. The modified area risk 

method is then combined with the CE-MCS, which is an 

efficient and robust simulation technique, to arrive at a novel 

framework for the short-term risk assessment of composite 

power systems.  

The case studies performed on the 24-bus IEEE RTS 

validates the effectiveness of the proposed reliability modeling 

approach as well as the computational superiority of the 

proposed framework compared to existing methods. Further, 

the impacts of the transmission system and daily unit 

commitment on the short-term risk indices are also explored. 

Short-term risk indices are significantly affected by the 

transmission capacities and commitment decisions. Finally, the 

impact of wind penetration and CE parameters on the short-

term risk indices are examined. 
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